
A General Characterization of the Early Exercise Premium

João Pedro Vidal Nunes
CEMAF/ISCTE

Complexo INDEG/ISCTE, Av. Prof. Aníbal Bettencourt, 1600-189 Lisboa, Portugal.
Tel: +351 21 7958607. Fax: +351 21 7958605.

E-mail: joao.nunes@iscte.pt

February, 2006



Abstract

Under the (weak) assumption of a Markovian underlying price process, an alternative and intuitive
characterization of the early exercise premium is proposed. This new representation involves the
first passage time density of the underlying spot price to the exercise boundary and is simply based
on the observation that the discounted early exercise premium must be a martingale under the
“risk-neutral” measure. The Markov property ensures analytical tractability since it enables the
decomposition of the joint density between the first hitting time and the underlying asset price
through the convolution of their marginal densities.

The analytical pricing solution proposed for American options is automatically consistent with
the “value-matching” condition, is valid for any parameterization of the exercise boundary, and is
shown to possess appropriate asymptotic properties. More important, such new valuation frame-
work can be easily transposed from the standard geometric Brownian motion assumption to more
general Markovian asset price processes, which can accommodate stochastic volatility and/or sto-
chastic interest rates.

The optimal stopping time density is shown to satisfy a non-linear but one-dimensional integral
equation. Using the algorithm suggested by Park and Schuurmann (1976), the first hitting time
density of a geometric Brownian motion is obtained for any (time-dependent) specification of the
early exercise boundary and tight lower bounds follow for the price of an American option. Several
exercise boundary parametric specifications are tested and it is shown that, with only one para-
meter and at a higher computational speed, it is possible to achieve an accuracy comparable to
a 15,000-step binomial tree. The extension to alternative Markovian diffusion processes is left for
future research.
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1 Introduction

The inexistence of a closed-form pricing solution for the American put stems from the fact that the
option price and the early exercise boundary must be determined simultaneously as the solution
of the same free boundary problem set up by McKean (1965). Therefore, the vast literature on
this subject, which is reviewed, for instance, in Baroni-Adesi (2005), has only proposed numerical
solution methods as well as analytical approximations.

The numerical methods include the finite difference schemes introduced by Brennan and Schwartz
(1977) and the binomial model of Cox, Ross and Rubinstein (1979). These methods are both simple
and convergent, in the sense that accuracy can be improved by incrementing the number of time or
state space steps. However, they are also too time consuming and do not provide the comparative
statics attached to an analytical solution. On the other hand, and given the difficulty in finding
first passage time densities, the optimal stopping approach initiated with Bensoussan (1984) and
Karatzas (1988) has not also produced efficient pricing solutions.

One of the first quasi-analytical approximations is due to Baroni-Adesi and Whaley (1987), who
use the quadratic method of MacMillan (1986). Despite its high efficiency and the accuracy im-
provements brought by subsequent extensions (see, for example, Ju and Zhong (1999)), this method
is not convergent. Another non-convergent approach is proposed by Johnson (1983) and Broadie
and Detemple (1996). They provide lower and upper bounds for American options, which are based
on regression coefficients that are estimated through a time-demanding calibration to a large set
of option contracts. Moreover, and as argued by Ju (1998, page 642), this econometric approach
can generate less accurate hedging ratios, because the regression coefficients are only optimized for
pricing purposes. More recently, Sullivan (2000) approximates the option value function through
Chebyshev polynomials and employs a Gaussian quadrature integration scheme at each discrete
exercise date. Although the speed and accuracy of the proposed numerical approximation can be
enhanced via Richardson extrapolation, its convergence properties are still unknown.

Concerning the convergent pricing methodologies, Geske and Johnson (1984) approximates
the American option price through an infinite series of multivariate normal distribution functions.
Although the pricing accuracy can be increased as more terms are added, only the first few terms are
considered and a Richardson extrapolation scheme is employed in order to reduce the computational
burden. Another convergent method, which is also fast and accurate, is the randomization approach
of Carr (1998), who also uses Richardson extrapolation. However, one of the main disadvantages
of extrapolation schemes is the indetermination of the sign for the approximation error.

Kim (1990), Jacka (1991), Carr, Jarrow and Myneni (1992) and Jamshidian (1992) are in the
genesis of the so-called “integral representation method”, which provided an analytical representa-
tion of the early exercise premium through an integral equation. This approach was also used by Ju
(1998) to derive fast and accurate approximate solutions that are based on a multipiece exponential
representation of the early exercise boundary. Based on simpler parameterizations of the exercise
boundary (which is assumed to be constant or of exponential type), Ingersoll (1998) and Sbuelz
(2004) are able to decompose the American put price into a down-and-out European put and a
non-deferrable rebate. Hence, they provide closed-form approximations that are fast to implement
but not very accurate.

As argued by Carr (1998, page 616) and shown by the numerical experiments run by Broadie
and Detemple (1996) and Ju (1998), the most efficient and accurate analytical pricing methods
correspond to the econometric approach of Broadie and Detemple (1996), the randomization method
of Carr (1998), and the multipiece exponential boundary approximation of Ju (1998). But, given
the lower accuracy of the Broadie and Detemple (1996) method with respect to the computation
of hedging ratios, the last two approaches seem to be the more promising ones until now. Notice,
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however, that all the studies already mentioned are based on the Black and Scholes (1973) geometric
Brownian motion assumption, and most of them only differ in the specification adopted for the
exercise boundary.

Based on the optimal stopping approach, the main purpose of this paper is to derive an alterna-
tive characterization of the early exercise premium that is valid for any continuous representation
of the exercise boundary and for any Markovian stochastic process describing the dynamics of the
underlying asset price. Using the Park and Schuurmann (1976) methodology, it is shown that the
first passage time density can be easily recovered under the geometric Brownian motion assumption.
Therefore, several parameterizations of the early exercise boundary are tested and new accurate
approximations of the American put price are proposed.

Next sections are organized as follows. Based on the optimal stopping formulation of Jacka
(1991), section 2 separates the American put into a non-deferrable rebate and an European down-
and-out put. In section 3, such “barrier option approach” is shown to be equivalent to the usual
decomposition between an European put and an early exercise premium. Moreover, an alternative
quasi-analytical and more general characterization is offered for the early exercise premium, and its
asymptotic properties are tested. Section 4 provides an efficient algorithm for the computation of
a geometric Brownian motion first hitting density, which allows the comparison, in section 6, of the
different specifications of the early exercise boundary discussed in section 5. Section 7 concludes.

2 The Barrier Option Approach

The valuation of American options will be pursued in the context of a stochastic intertemporal
economy with continuous trading on the time-interval [t0, T ], for some fixed time T > t0, and
where uncertainty is represented by a complete probability space (Ω,F ,Q). Throughout the paper,
Q will denote the martingale probability measure obtained when the numeraire of the economy
under analysis is taken to be a “money market account” Bt, whose dynamics are governed by the
following ordinary differential equation:

dBt = rBtdt, (1)

where r denotes the riskless interest rate, which is assumed to be constant.
Although the alternative representation of the early exercise premium that will be proposed in

theorem 1 only requires the underlying asset price process St to be Markovian, the forthcoming
empirical analysis will be based on the usual geometric Brownian motion assumption, i.e.

dSt
St

= (r − q) dt+ σdWQ
t , (2)

where q represents the dividend yield for the asset price, σ corresponds to the instantaneous volatil-
ity (per unit of time) of the asset returns andWQ

t ∈ < is a standard Brownian motion, initialized at
zero and generating the augmented, right continuous, and complete filtration F = {Ft : t ≥ t0}. The
underlying asset can be thought as a stock, a stock index, an exchange rate or a financial future, as
long as the parameter q is understood as, respectively, a dividend yield, an average dividend yield,
the foreign default-free interest rate or the domestic risk-free interest rate.

Hereafter, the analysis will be focused on the valuation of an American put on the asset price
S, with strike price K, and with maturity date T , whose time-t (≤ T ) value will be denoted by
Pt (S,K, T ).1 Since the American put can be exercised at any time during its life, it is well known

1The American call option can be valued in a similar fashion or, under the geometric Brownian motion assumption,
using the parity result derived by McDonald and Schroder (1998, equation 1).
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-see, for example, Karatzas (1988, theorem 5.4) or Shreve (2004, equation 8.4.1)- that its price is
the solution to an optimal stopping problem, i.e.:

Pt0 (S,K, T ) = sup
τ∈T

EQ
n
e−r[(T∧τ)−t0] (K − ST∧τ )

+
¯̄̄
Ft0

o
, (3)

where T is the set of all stopping times for the filtration F generated by the underlying price process
and taking values in [t0,∞], while EQ (X| Ft) denotes the expected value of the random variable
X, conditional on Ft, and computed under the equivalent martingale measure Q.2

Following, for instance, Carr et al. (1992, equations 1.2 and 1.3), for each time t ∈ [t0, T ] there
exists a critical asset price Et bellow which the American put price equals its intrinsic value and,
therefore, early exercise should occur. That is

Pt (S,K, T ) = (K − St)
+ if St ≤ Et, (4)

and
Pt (S,K, T ) > (K − St)

+ if St > Et. (5)

Consequently, Jacka (1991) argues that the optimal exercise policy should be to exercise the Amer-
ican put option the first time the underlying asset price falls to its critical level. Representing
by

τ e := inf {u ≥ t0 : Su = Eu} (6)

the first passage time of the underlying asset price to its moving boundary and considering that
the American option is still alive at the valuation date (i.e. St0 > Et0), equation (3) can then be
restated as:3

Pt0 (S,K, T ) = EQ
n
e−r[(T∧τe)−t0] (K − ST∧τe)

+
¯̄̄
Ft0
o

= EQ
h
e−r(τe−t0) (K −Eτe)1{τe<T}

¯̄̄
Ft0
i

(7)

+e−r(T−t0)EQ
£
(K − ST )

+ 1{τe≥T}
¯̄
Ft0
¤
,

where the first line of equation (7) follows from identity (6). Notice that K ≥ Eτe since Van Mo-

erbeke (1976) has shown that the exercise boundary is bounded from above by min
³
K, rqK

´
.

Equation (7) decomposes the American put into two components. The first one corresponds
to the present value of a non-deferrable (and, in general, also non-constant) rebate (K −Eτe),
payable on the optimal stopping time τ e. The second component is simply the time-t0 price of
an European down-and-out put on the asset S, with strike price K, maturity date at time T and
(time-dependent) barrier levels {Et, t0 ≤ t ≤ T}. Assuming a convenient parametric specification
for the barrier function Et, it is possible to convert equation (7) into a closed-form solution. Such
an approach was pursued, for instance, by Ingersoll (1998), using both constant and exponential
specifications, and by Sbuelz (2004), also under a constant barrier formulation.

Unfortunately, the time path {Et, t0 ≤ t ≤ T} of critical asset prices at which early exercise
occurs, which is called the exercise boundary, is not known ex ante and, therefore, the assumption of

2Similarly, Q (ω| Ft) will represent the probability of event ω, conditional on Ft, and computed under the proba-
bility measure Q.

3Next formulae make use of the indicator function, which is defined as:

1{ω∈Ω} =
1⇐= ω ∈ Ω
0⇐= ω /∈ Ω

.
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a specific parametric form for the barrier function simply transforms equation (7) into a lower bound
for the true American put option value. Instead, this paper proposes an alternative characterization
of the American put price, which is valid for any specification of the exercise boundary. Moreover,
by using a more general class of functional forms for the barrier level Et, it will be possible to
obtain tighter lower bounds for the American option price.

3 The Early Exercise Premium

Similarly to Kim (1990), Jacka (1991), and Carr et al. (1992), the American put price can be divided
into two components: the corresponding European put price and an early exercise premium. For
this purpose, and because 1{τe≥T} = 1− 1{τe<T}, equation (7) can be rewritten as:

Pt0 (S,K, T ) = EQ
h
e−r(τe−t0) (K −Eτe)1{τe<T}

¯̄̄
Ft0
i

+e−r(T−t0)EQ
£
(K − ST )

+
¯̄
Ft0

¤
−e−r(T−t0)EQ

£
(K − ST )

+ 1{τe<T}
¯̄
Ft0
¤
.

And, since
e−r(T−t0)EQ

£
(K − ST )

+
¯̄
Ft0

¤
:= pt0 (S,K, T ) (8)

can be understood (under a deterministic interest rate setting) as the time-t0 price of the corre-
sponding European put (with technical features identical to the ones of the American option under
analysis), then

Pt0 (S,K, T ) = pt0 (S,K, T ) (9)

+EQ
h
e−r(τe−t0) (K −Eτe)1{τe<T}

¯̄̄
Ft0

i
−e−r(T−t0)EQ

£
(K − ST )

+ 1{τe<T}
¯̄
Ft0
¤
.

The last two terms on the right-hand-side of equation (9) correspond to the early exercise
premium, for which a quasi-analytical solution will be proposed in the next lines.

3.1 An Alternative Characterization

The next theorem provides the main result of the paper.

Theorem 1 Assuming that the underlying asset price process St is Markovian and that the interest
rate r is constant, the time-t0 value of an American put Pt0 (S,K, T ) on the asset price S, with
strike price K, and with maturity date T can be decomposed into the corresponding European put
price pt0 (S,K, T ) and the early exercise premium eept0 (S,K, T ), i.e.

Pt0 (S,K, T ) = pt0 (S,K, T ) + eept0 (S,K, T ) , (10)

with

eept0 (S,K, T ) :=

Z T

t0

e−r(u−t0) [(K −Eu)− pu (E,K, T )]Q (τ e ∈ du| Ft0) , (11)

and where Q (τ e ∈ du| Ft0) represents the probability density function of the first passage time τ e,
as defined by equation (6).
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Proof. Noticing that the only random variable contained in the second term on the right-hand-side
of equation (9) is the first passage time, then

EQ
h
e−r(τe−t0) (K −Eτe)1{τe<T}

¯̄̄
Ft0
i
=

Z T

t0

e−r(u−t0) (K −Eu)Q (τ e ∈ du| Ft0) . (12)

Concerning the third term on the right-hand-side of equation (9), it is necessary to consider the
joint density of the two random variables involved: the first passage time τ e and the terminal asset
price ST . Hence,

EQ
£
(K − ST )

+ 1{τe<T}
¯̄
Ft0
¤
=

Z
<
(K − S)+Q (ST ∈ dS, τ e < T | Ft0) , (13)

where the integration can be restricted to the domain <+ if the geometric Brownian motion as-
sumption is imposed. Because the underlying asset price is assumed to be a Markov process, the
joint density contained in equation (13) is simply the convolution between the density of the first
passage time τ e and the transition probability density function of the terminal asset price ST :

Q (ST ∈ dS, τ e < T | Ft0) =
Z T

t0

Q (ST ∈ dS|Su = Eu)Q (τ e ∈ du| Ft0) . (14)

Therefore, combining equations (13) and (14),

EQ
£
(K − ST )

+ 1{τe<T}
¯̄
Ft0

¤
=

Z T

t0

·Z
<
(K − S)+Q (ST ∈ dS|Su = Eu)

¸
Q (τ e ∈ du| Ft0)

=

Z T

t0

EQ
£
(K − ST )

+
¯̄
Su = Eu

¤
Q (τ e ∈ du| Ft0) . (15)

Moreover, considering equation (8) for t0 = u and Su = Eu, the expectation contained in the
right-hand-side of equation (15) can be expressed in terms of an European put price:

EQ
£
(K − ST )

+ 1{τe<T}
¯̄
Ft0

¤
=

Z T

t0

er(T−u)pu (E,K, T )Q (τ e ∈ du| Ft0) . (16)

Finally, combining equations (9), (12) and (16), the early exercise representation (11) follows.
Under the usual geometric Brownian motion assumption, the term pu (E,K, T ) can be computed

using the Merton (1973) formulae and, consequently, equation (11) yields a closed-form solution to
the early exercise premium (modulo to the specification of the first passage time density). Notice,
however, that the proof of theorem 1 only relies on the much weaker assumption of a Markovian
asset price. That is, the early exercise representation (11) is still valid for other asset price processes
beyond the standard stochastic differential equation (2).

The representation offered by theorem 1 is also amenable to an intuitive interpretation. Since4

lim
S→Eu

Pu (S,K, T ) := Pu (E,K, T ) = K −Eu,

then equation (11) can be rewritten as

eept0 (S,K, T ) =

Z T

t0

e−r(u−t0) [Pu (E,K, T )− pu (E,K, T )]Q (τ e ∈ du| Ft0) .

4See proposition 1.
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Using equation (10), today’s early exercise premium can now be easily understood as the discounted
expectation of the early exercise premium at the first passage time:

eept0 (S,K, T ) = EQ
h
e−r(τe−t0)eepτe (E,K, T )1{τe<T}

¯̄̄
Ft0

i
. (17)

That is, the discounted early exercise premium, being the difference of two option prices, is, as
expected, a martingale under measure Q.

Such an interpretation is substantially different from the one implicit in the characterization of
the American put already offered by Kim (1990), Jacka (1991), Carr et al. (1992) and Jamshidian
(1992). For all these authors, the early exercise premium corresponds to the compensation that
the option’ holder would require (in the stopping region) in order to postpone exercise until the
maturity date. Under the geometric Brownian motion assumption and for some early exercise
boundary specifications -see, for example, Ju (1998) for a multipiece exponential formulation- it
is possible to obtain closed-form solutions for such early exercise representation. Alternatively,
the new characterization offered by theorem 1 can be applied for any early exercise boundary
specification and under any Markovian process for the underlying asset price.

3.2 Asymptotic properties

Before moving towards an explicit approximation of the American put price and in order to in-
vestigate its limits, the asymptotic properties of the early exercise representation (11) are first
explored.

Proposition 1 Under the assumptions of theorem 1, the early exercise premium and the American
put value satisfy the following boundary conditions:

lim
r↓0

eept (S,K, T ) = 0, (18)

PT (S,K, T ) = (K − ST )
+ , (19)

lim
S↑∞

Pt (S,K, T ) = 0, (20)

and
lim
S↓Et

Pt (S,K, T ) = K −Et. (21)

Proof. See appendix A.
In order to facilitate the comparison against the previous literature, the usual results follow

once the geometric Brownian motion case is adopted.

Proposition 2 Under the geometric Brownian motion assumption (2) the American put value
function given by theorem 1 converges, in the limit, to the perpetual put formulae given by McKean
(1965) or Merton (1973), and satisfies, for St > Et and t ≤ T , the Black-Scholes partial differential
equation

LPt (S,K, T ) = 0, (22)

where L is the parabolic operator

L := σ2S2

2

∂2

∂S2
+ (r − q)S

∂

∂S
− r +

∂

∂t
. (23)
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Proof. See appendix B.
The relevance of propositions 1 and 2 emerges from the fact that the American put price is,

under the geometric Brownian motion assumption, the unique solution of the initial value problem
represented by the partial differential equation (22) and by the boundary conditions (19) to (21) -see,
for instance Jacka (1991, proposition 2.3.1). Moreover, according to equation (21) and contrary to
the characterization offered by Kim (1990), Jacka (1991), Carr et al. (1992) and Jamshidian (1992),
the American put representation contained in theorem 1 is automatically consistent with the so-
called value-matching condition (no matter the specification adopted for the exercise boundary).

However, it is well known, at least since the analysis of McKean (1965), that in order to uniquely
determine both the American put value and the exercise boundary, the initial value problem repre-
sented by equations (19) to (22) must be transformed into a larger free boundary problem through
the inclusion of an additional high contact condition:

lim
S↓Et

∂Pt (S,K, T )

∂S
= −1. (24)

As with all previous early exercise representations, the general solution proposed in theorem 1 is
not automatically consistent with equation (24) for all exercise boundary specifications. In order
to incorporate equation (24) into the valuation problem, Ju (1998) restricted the optimal exercise
boundary to a multipiece specification, which was determined by the iterative solution of successive
value-match and high contact conditions. However, and as proposition 4 will reveal, it would be
too time-consuming to apply the high contact condition to theorem 1, if no restriction is to be
imposed to the exercise boundary.

4 The First Passage Time Density

To implement the new American put value representation offered by theorem 1, it is necessary
to compute the first passage time density of the underlying asset price to the moving exercise
boundary. Except for some crude critical asset price specifications, as for example the constant
and exponential functional forms used by Ingersoll (1998), the optimal stopping time density is
not known in closed-form. Following Kuan and Webber (2003), this section shows that such first
passage time density can be efficiently computed, under the geometric Brownian motion assumption
and for any exercise boundary specification, through the numerical method proposed by Park and
Schuurmann (1976). For the sake of brevity, the extension to alternative Markovian diffusion
processes is left for future research.

4.1 An Integral Equation Representation

Next proposition is based on Park and Schuurmann (1976, theorem 1) and provides a non-linear
integral equation for the optimal stopping time density under consideration.

Proposition 3 Under the assumptions of theorem 1, under the dynamics of equation (2), and
considering that the optimal exercise boundary is a continuous function of time, the first passage
time density of the underlying asset price to the moving exercise boundary is the implicit solution
of5 Z u

t0

Φ

µ
Ez
v −Ez

u√
u− v

¶
Q (τ e ∈ dv| Ft0) = Φ

µ
− Ez

u√
u− t0

¶
, (25)

5Actually, it would suffice to consider a “sectionally continuous” function, meaning that at each point s of discon-
tinuity Es = min (Es−, Es+).
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for u ∈ [t0, T ] and where

Ez
v :=

ln
³
St0
Ev

´
+
³
r − q − σ2

2

´
(v − t0)

σ
, (26)

with Φ (·) representing the cumulative density function of the univariate standard normal distribu-
tion.

Proof. Solving the stochastic differential equation (2), then

Sv = St0 exp

·µ
r − q − σ2

2

¶
(v − t0)− σZQv

¸
,

where

ZQv := −
Z u

t0

dWQ
s

is still a canonical Brownian motion (under measure Q). Therefore and using definition (26), the
distribution of the first hitting time for the asset price can be written in terms of the previous
Wiener process:

Q (τ e ≤ u| Ft0) = Q
·
sup

t0≤v<u

¡
ZQv −Ez

v

¢
≥ 0

¯̄̄̄
Ft0

¸
, (27)

for u ∈ [t0, T ].
Assuming that the (modified) exercise boundary Ez

v is continuous on [t0, u], then theorem 1
of Park and Schuurmann (1976) can be applied to equation (27), yielding the following integral
equation:

Q (τ e ≤ u| Ft0) = Φ

µ
− Ez

u√
u− t0

¶
+

Z u

t0

Φ

µ
Ez
u −Ez

v√
u− v

¶
Q (τ e ∈ dv| Ft0) . (28)

Since Q (τ e ≤ u| Ft0) =
R u
t0
Q (τ e ∈ dv| Ft0) and attending to the symmetry of the normal distrib-

ution function, equation (25) follows immediately from equation (28).

4.2 The Park and Schuurmann (1976) Algorithm

Based on proposition 3, it is now possible to price the American put option, for any continuous
specification of the exercise boundary and through the numerical solution of equations (11) and
(25). For this purpose, next proposition summarizes the “standard partition” method proposed by
Park and Schuurmann (1976).6

Proposition 4 Under the assumptions of proposition 3 and dividing the time-interval [t0, T ] into
N sub-intervals of (equal) size h := T−t0

N , then

eept0 (S,K, T ) =
NX
j=1

e−r
(2j−1)h

2

h
K −E

t0+
(2j−1)h

2

− p
t0+

(2j−1)h
2

(E,K, T )
i

(29)

[Q (τ e = t0 + jh)−Q (τ e = t0 + (j − 1)h)] ,
6For long option maturities, accuracy can be improved via the more time-consuming “variable step-size” approach

suggested by Park and Schuurmann (1980). However, the numerical results presented in section 6 show that such an
improvement is negligible even for time-to-maturities of twenty years.
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where the probabilities Q (τ e = t0 + jh) are obtained from the following recurrence relation:

Q (τ e = t0 + kh) (30)

= Q (τ e = t0 + (k − 1)h) +

Φ
Ez

t0+
(2k−1)h

2

−Ez
t0+khq

h
2


−1½

Φ

µ
−
Ez
t0+kh√
kh

¶

−
k−1X
j=1

Φ

Ez

t0+
(2j−1)h

2

−Ez
t0+khq

[2(k−j)+1]h
2

 [Q (τ e = t0 + jh)−Q (τ e = t0 + (j − 1)h)]

 ,

for k = 1, . . . , N , and with Q (τ e = t0) = 0.

Proof. See appendix C.

5 Specification of the Exercise Boundary

The pricing solution offered by theorem 1 depends on the specification adopted for the exercise
boundary {Et, t0 ≤ t ≤ T}. Although such optimal exercise policy is not known ex ante (i.e. before
the solution of the pricing problem), its main characteristics have been already established in the
literature: i) The exercise boundary is a continuous function of time -see, for instance, Jacka
(1991, propositions 2.2.4 and 2.2.5); ii) Et is a non-decreasing function of time t -see Jacka (1991,

proposition 2.2.2); iii) The exercise boundary is bounded from above by ET = min
³
K, rqK

´
-as

stated in Van Moerbeke (1976); and iv) limt↑∞Et = E∞, where E∞ represents the (constant)
critical asset price for the perpetual American put case.

As described by Ingersoll (1998, page 89), in order to price the American put it is necessary
to chose a parametric family E of exercise policies Et (θ), where each policy is characterized by a
n-dimensional vector of parameters θ ∈ <n. Then, the early exercise value (as given by equation
(11)) is expressed as a function of θ, and maximized with respect to the parameters. Since the
chosen family E may not contain the optimal exercise boundary, the resulting American put price
constitutes a lower bound for the true option value.

Of course, the more general is the specification adopted for the exercise boundary the smaller
should be the approximation error associated to the American put price estimate. Moreover, the
chosen parametric family should, at least, satisfy the requirements (i)-(iv) described at the start of
this section. However, the parametric families already proposed in the literature have been chosen
not for their generality but because they provide fast analytical pricing solutions. In order to
measure the accuracy improvement provided by more general families of exercise policies, section
6 will consider the following parametric families:

1. Constant exercise boundary:
Et (θ) = θ1, θ1 > 0. (31)

This is the simplest specification one can adopt and was already used by Ingersoll (1998)
and Sbuelz (2004). Although it yields a closed-form solution for equation (11), such exercise
boundary can not simultaneously satisfy the previously stated features (iii) and (iv).

2. Exponential family:
Et (θ) = θ1 exp (θ2t) , θ1, θ2 > 0. (32)

This specification, already proposed by Ingersoll (1998), also yields an analytical solution for
equation (11) but, again, can not simultaneously satisfy requirements (iii) and (iv).
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3. Exponential-constant family:

Et (θ) = θ1 + exp (θ2t) , θ2 > 0. (33)

This new parameterization corresponds to a simple modification of equation (32) and has
never been proposed in the literature. Nevertheless, section 6 will show that it produces
smaller pricing errors than equation (32), for the same number of parameters.

4. Polynomial family:

Et (θ) =
nX
i=1

θit
i−1. (34)

Because the exercise boundary is assumed to be continuous and defined on the closed interval
[t0, T ], the Weierstrass approximation theorem implies that Et can be uniformly approxi-
mated, for any desired accuracy level, by the polynomial (34). By increasing the degree of
the polynomial (and, therefore, the number of parameters to be estimated), this new class of
exercise policies allows the pricing error to be arbitrarily reduced. Section 6 will reveal that
with only five parameters (that is, a polynomial of degree 4) it is possible to obtain smaller
pricing errors than with the alternative specifications already proposed in the literature.

5. CJM family:

Et (θ) = min

µ
K,

r

q
K

¶
exp

³
−θ1
√
T − t

´
+E∞

h
1− exp

³
−θ1
√
T − t

´i
, θ1 ≥ 0. (35)

Equation (35) corresponds to an exponentially weighted average between the upper bound
and the perpetual limit of the exercise boundary, and fulfills all the requirements (i)-(iv).
Such specification was proposed by Carr et al. (1992, page 93) but has never been tested
since it does not yield an analytical solution for the American put price. Next section will
show that, with only one parameter, the magnitude of the pricing errors produced by this
specification is similar to the one associated to the best parameterizations already available
in the literature.

6 Numerical Results

In order to test the influence of the exercise boundary specification on the early exercise value, all the
parametric families described in section 5 will be compared for different constellations of the pricing
model coefficients contained in equation (2). For this purpose, the maximization of the early exercise
value (with respect to the parameters defining the exercise policy) will be implemented through the
Powell’s method, as described in Press, Flannery, Teukolsky and Vetterling (1994, section 10.5).
This method only requires evaluations of the function to be maximized and, therefore, it is faster
than a conjugate gradient or a quasi-Newton algorithm. Nevertheless, it is always possible to use a
more robust optimization method that also requires evaluations of the derivatives of the function to
be maximized, because the derivatives of the first passage time density can be computed through
a recurrence relation similar to equation (30).7

Table 1 compares, in terms of both accuracy and efficiency, the valuation of (short maturity)
American put options under different specifications of the exercise boundary and using the option’
parameters contained in Broadie and Detemple (1996, table 1) and Ju (1998, table 1). Accuracy is

7Details available upon request.

10



measured by the average percentage error (over the twenty contracts considered) of each valuation
approach and with respect to the exact American option price. This proxy of the “true” American
put value (fourth column) is computed through the binomial tree model with 15,000 time steps, as
suggested by Broadie and Detemple (1996, page 1222). Efficiency, that is the computational speed
of each valuation method, is evaluated by the total CPU time (expressed in seconds) spent to value
the whole set of contracts considered.8

To have an idea about the magnitude of the early exercise value associated to each American
option contract, the third column of table 1 shows the price of the corresponding European put
contracts, which is computed via the Merton (1973) formulae. The American put prices produced by
the analytical pricing solutions associated to the constant and exponential boundary specifications
(fifth and sixth columns), as given by equations (31) and (32), respectively, are obtained from
Ingersoll (1998, sections 4 and 5). For comparison purposes, the last column of table 1 contains the
American put prices generated by the three-point multipiece exponential function method proposed
by Ju (1998, page 636). As already mentioned in section 1, there are three methods in the literature
that seem to dominate the other American pricing approaches in terms of accuracy and efficiency:
the regression bounds of Broadie and Detemple (1996), the randomization approach of Carr (1998),
and the multipiece exponential boundary approximation of Ju (1998). The choice of the multipiece
exponential approximation as a benchmark for the best pricing methods already proposed in the
literature follows from Ju (1998, tables 3 and 5): it is faster than the Carr (1998) approach (for
the same accuracy level); and much more accurate, for hedging purposes, than the lower and upper
bound approximation of Broadie and Detemple (1996).

All the other early exercise boundary approximations (i.e. from the seventh to the tenth column
of table 1) are implemented through proposition 4 and with N = 28. For the exponential-constant
(seventh column) and polynomial (of degree 3 and 4, on the eight and ninth columns, respectively)
boundary specifications, the parameter corresponding to the constant term in equations (33) and
(34) is initialized at the Baroni-Adesi and Whaley (1987) estimate (and at zero, for the other para-
meters). For the CJM exercise boundary approximation, the initial guess of the single parameter
involved in equation (35) is also set at zero.

Tables 2 and 3 present the same information, but for medium and long maturity option con-
tracts, respectively, and yield results similar to the ones contained in table 1 as a consequence of
the asymptotic property described in proposition 2. In general, one may conclude that the fastest
approximations (in terms of CPU time) are the constant, the exponential, and the three-point mul-
tipiece exponential specifications: they all possess computational times bellow 0.1 seconds for all
the range of contracts under consideration. However, the pricing errors generated by the constant
and the exponential parameterizations can be significative. For instance, in table 2 the constant
exercise policy possess a mean percentage pricing error bellow −0.5%, while the average mispricing
of the exponential parameterization equals −10 basis points. As expected, the pricing errors pro-
duced by the specifications described in section 5 are negative because any approximation of the
optimal exercise policy can only yield a lower bound for the true American put price.9

With the same number of parameters as the already known exponential approximation, the
new exponential-constant parameterization can yield pricing errors about three times smaller, as
shown in table 1. More interesting, the CJM approximation suggested by Carr et al. (1992) and
now tested, can be about four times faster than the exponential-constant specification (since only

8All computations are made by running Pascal programs on an Intel Pentium 4 2.80GHz processor and under a
Linux operating system.

9The only exception corresponds to the approximation suggested by Ju (1998), for which the pricing errors
are consistently positive. This behavior might be explained by the non-uniform convergence of the Richardson
extrapolation employed.
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one parameter must be estimated), and possesses an accuracy similar to the three-point multipiece
exponential approach: the average pricing errors are between one and three basis points. This
result is relevant since the CJM approximation satisfies all the requirements described in section 5
for the early exercise boundary specification.

Finally, table 1 shows that the implementation of a polynomial approximation of degree 4
is able to provide smaller pricing errors than the Ju (1998) approach, but at the expense of a
prohibitive computational effort. Of course and as shown by table 4, the accuracy of a polynomial
specification can be always improved by increasing its degree. Table 4 applies different polynomial
parameterizations to a random sample of 1,250 American put options generated as in Ju (1998,
table 3). With a five-degree polynomial it is possible to obtain an average absolute percentage
error (computed against a binomial tree model with 15,000 time steps) of only one basis point and
a maximum absolute percentage error of about 4 basis points.

Overall, taking into consideration both accuracy and efficiency, the best pricing methodology
is still the multipiece exponential approach of Ju (1998). Even though such parameterization does
not obey to the requirements enunciated in section 5, it seems to be flexible enough to capture
the behavior of the critical asset prices. Notice that for the same level of accuracy, the three-point
multipiece exponential specification involves six unknown parameters, while the CJM approxima-
tion provides only one degree of freedom. Nevertheless, the disparity of pricing errors contained in
tables 1, 2 and 3 shows that the early exercise premium depends significantly (if not critically) on
the specification adopted for the early exercise boundary.

7 Conclusions

The main theoretical contribution of this paper consisted in deriving an alternative characterization
of the early exercise premium, which is valid for any Markovian representation of the underlying
asset price and for any parameterization of the exercise boundary. Moreover, the proposed charac-
terization is shown to be automatically consistent with the value-matching condition and to possess
appropriate asymptotic properties.

Under the geometric Brownian motion assumption, several parameterizations of the exercise
boundary were tested. The disparity of results produced by such different specifications implies
that the pricing accuracy depends on the parameterization adopted. Nevertheless, it is shown that
the single-parameter specification suggested by Carr et al. (1992, page 93) is as accurate as the
six-parameter approximation proposed by Ju (1998), being this latter approach much more efficient.

Concerning further research and since the analytical pricing of American options under the geo-
metric Brownian motion process is already well established through the randomization approach
of Carr (1998) or the multipiece exponential boundary approximation of Ju (1998), the character-
ization proposed in theorem 1 can be more fruitfully applied under alternative (but Markovian)
stochastic processes for the underlying asset price. For this purpose to be accomplished in an effi-
cient way, it is only required that the selected price process provides a viable valuation method for
European options and for the first passage time density.
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A Appendix: Proof of Proposition 1

Concerning the boundary condition (18), since

lim
r↓0

ET = min

µ
K, lim

r↓0

r

q
K

¶
= 0

and because the exercise boundary {Et, t0 ≤ t ≤ T} is a non-decreasing function of t, then

lim
r↓0

Eu = 0, ∀u ∈ [t0, T ] . (36)

Combining equations (11) and (36),

lim
r↓0

eept0 (S,K, T ) =

Z T

t0

e−0(u−t0)
·
K − lim

r↓0
pu (0,K, T )

¸
lim
r↓0
Q (τ e ∈ du| Ft0) . (37)

Finally, since
£
e−r(T−t)K − St

¤+ ≤ pt (S,K, T ) ≤ e−r(T−t)K follows from straightforward no-
arbitrage arguments, then limr↓0 pu (0,K, T ) = K and, therefore, equation (37) can be rewritten
as

lim
r↓0

eept0 (S,K, T ) =

Z T

t0

(K −K) lim
r↓0
Q (τ e ∈ du| Ft0)

= 0.

The terminal condition (19) follows immediately from equation (10) because pT (S,K, T ) =
(K − ST )

+ and eepT (S,K, T ) = 0.
Concerning the boundary condition (20) and because limS↑∞ pt (S,K, T ) = 0, equation (10)

yields:

lim
S↑∞

Pt (S,K, T ) (38)

=

Z T

t
e−r(u−t) [(K −Eu)− pu (E,K, T )] lim

S↑∞
Q (τ e ∈ du| Ft) .

Since limS↑∞ Su =∞, ∀u ≥ t and for any reasonable Markov process Su, then

lim
S↑∞

Q (τ e ∈ du| Ft) = lim
S↑∞

Q
µ
Su = Eu ∧ inf

t≤v<u
(Sv −Ev) > 0

¯̄̄̄
Ft
¶

= 0, (39)

because the exercise boundary is independent of the current asset price and finite. Combining
equations (38) and (39), the boundary condition (20) is obtained.

Finally, the value-matching condition (21) is also easily derived from equation (10):

lim
S↓Et

Pt (S,K, T ) (40)

= pt (E,K, T ) +

Z T

t
e−r(u−t) [(K −Eu)− pu (E,K, T )] lim

S↓Et
Q (τ e ∈ du| Ft0) .

Since
lim
S↓Et

Q (τ e ∈ du| Ft0) = δ (u− t) ,
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where δ (·) is the Dirac-delta function, then equation (40) yields

lim
S↓Et

Pt (S,K, T ) = pt (E,K, T ) + e−r(t−t) [(K −Et)− pt (E,K, T )]

= K −Et.

B Appendix: Proof of Proposition 2

Starting with the perpetual American put option and since, in this case, the critical asset price is
a time-invariant constant, that is Eu = E∞,∀u ∈ [t0, T ], the limit of equation (10), as the option’s
maturity date tends to infinity, is given by

lim
T↑∞

Pt (S,K, T )

= lim
T↑∞

pt (S,K, T ) + lim
T↑∞

Z T

t0

e−r(u−t) [(K −E∞)− pu (E∞,K, T )]Q (τ e ∈ du| Ft) .

Furthermore, Merton (1973, corollary 2) shows that the fair value of a perpetual European put
option is equal to zero and, consequently,

lim
T↑∞

Pt (S,K, T ) = (K −E∞)

Z ∞

t0

e−r(u−t0)Q (τ e ∈ du| Ft0)

= (K −E∞)EQ
h
e−r(τe−t)

¯̄̄
Ft
i
. (41)

Finally, solving the stochastic differential equation (2) and redefining the optimal stopping time τ e
as

τ e = inf {u ≥ t : Su = E∞}

= inf

½
u ≥ t : − 1

σ

µ
r − q − σ2

2

¶
(u− t)−

Z u

t
dWQ

v =
1

σ
ln

µ
St
E∞

¶¾
,

the (dividend-adjusted) Merton (1973, page 174) solution follows after applying theorem 8.3.2 of
Shreve (2004):

lim
T↑∞

Pt (S,K, T ) = (K −E∞)

µ
E∞
St

¶γ

, St > E∞, (42)

where
E∞ =

γ

1 + γ
K, (43)

and with

γ :=
r − q − σ2

2 +

r³
r − q − σ2

2

´2
+ 2σ2r

σ2
.
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Applying the parabolic operator L to equation (10) and using the Leibniz’s rule,

LPt (S,K, T ) (44)

= Lpt (S,K, T )

+

Z T

t
re−r(u−t) [(K −Eu)− pu (E,K, T )]Q (τ e ∈ du| Ft)

+

Z T

t
e−r(u−t) [(K −Eu)− pu (E,K, T )]LQ (τ e ∈ du| Ft)

−e−r(t−t) [(K −Et)− pt (E,K, T )]Q (τ e = t| Ft) .

Because Lpt (S,K, T ) = 0, considering that Q (τ e = t| Ft) = 0 since proposition 2 assumes that
St > Et, and using definition (23), equation (44) can be simplified into

LPt (S,K, T ) (45)

=

Z T

t
e−r(u−t) [(K −Eu)− pu (E,K, T )]

µ
∂

∂t
+A

¶
Q (τ e ∈ du| Ft) ,

where

A := σ2S2

2

∂2

∂S2
+ (r − q)S

∂

∂S

is the infinitesimal generator of S. Sinceµ
∂

∂t
+A

¶
Q (τ e ∈ du| Ft) = 0

can be interpreted as a Kolmogorov backward equation, then the partial differential equation (22)
is obtained.

C Appendix: Proof of Proposition 4

Equation (29) is simply the discretization of equation (11) for the partition t0 < t1 < . . . < tN = T ,
where h = tj − tj−1 (j = 1, . . . , N), tj = t0 + jh, and u =

tj+tj−1
2 .

Applying the same discretization to equation (25), then

kX
j=1

Φ

Ez

t0+
jh+(j−1)h

2

−Ez
t0+khq

kh− jh+(j−1)h
2

 [Q (τ e = t0 + jh)−Q (τ e = t0 + (j − 1)h)] = Φ
µ
−
Ez
t0+kh√
kh

¶
,

(46)
for k = 1, . . . ,N . Finally, solving equation (46) in order to the probability Q (τ e = t0 + kh),
equation (30) arises.
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Table 1: Comparison of different approximations for American put prices with St0 = $100 and T − t0 = 0.5 years
American

Early exercise boundary specification
Option parameters Strike European Exact Constant Exp. ExpConst 3-d Polyn. 4-d Polyn. CJM EXP3

80 0.215 0.219 0.218 0.219 0.219 0.219 0.219 0.219 0.220
r = 7% 90 1.345 1.386 1.376 1.385 1.386 1.386 1.386 1.386 1.387
q = 3% 100 4.578 4.783 4.750 4.778 4.781 4.781 4.782 4.781 4.784
σ = 20% 110 10.421 11.098 11.049 11.092 11.097 11.097 11.097 11.095 11.099

120 18.302 20.000 20.000 20.000 19.999 19.999 19.999 19.999 20.000
80 2.651 2.689 2.676 2.687 2.688 2.688 2.688 2.688 2.690

r = 7% 90 5.622 5.722 5.694 5.719 5.721 5.721 5.721 5.720 5.724
q = 3% 100 10.021 10.239 10.190 10.233 10.237 10.237 10.237 10.236 10.240
σ = 40% 110 15.768 16.181 16.110 16.173 16.180 16.179 16.179 16.177 16.183

120 22.650 23.360 23.271 23.350 23.358 23.358 23.358 23.355 23.362
80 1.006 1.037 1.029 1.036 1.037 1.037 1.037 1.037 1.038

r = 7% 90 3.004 3.123 3.098 3.120 3.122 3.122 3.122 3.122 3.125
q = 0% 100 6.694 7.035 6.985 7.029 7.034 7.034 7.034 7.032 7.037
σ = 30% 110 12.166 12.955 12.882 12.946 12.953 12.953 12.954 12.951 12.957

120 19.155 20.717 20.650 20.710 20.716 20.716 20.717 20.713 20.719
80 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664

r = 3% 90 4.495 4.495 4.495 4.495 4.495 4.495 4.495 4.495 4.495
q = 7% 100 9.251 9.250 9.251 9.251 9.251 9.251 9.251 9.251 9.251
σ = 30% 110 15.798 15.798 15.798 15.798 15.798 15.798 15.798 15.798 15.798

120 23.706 23.706 23.706 23.706 23.706 23.706 23.706 23.706 23.706
Mean Percentage Error -0.41% -0.05% -0.02% -0.02% -0.01% -0.02% 0.02%

CPU (seconds) 451.32 0.01 0.03 130.07 209.01 262.18 30.76 0.08

Table 1 values American put options under different specifications of the exercise boundary. The third column contains European put prices, while
the exact American put values (fourth column) are based on the binomial tree model with 15,000 time steps. The fifth and sixth columns report
the American put prices associated to the constant and exponential boundary specifications, as given by equations (31) and (32), respectively. The
seventh column presents American put prices computed through proposition 4 and based on the exponential-constant parameterization provided by
equation (33). The eight and ninth columns are both based on the polynomial boundary specification of equation (34) with three and four degrees of
freedom, respectively. The American put prices contained in the tenth column are obtained from the exercise boundary specification of equation (35).
The last column presents the American put prices generated by the three-point multipiece exponential function method proposed by Ju (1998).
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Table 2: Comparison of different approximations for American put prices with St0 = $100 and T − t0 = 3 years
American

Early exercise boundary specification
Option parameters Strike European Exact Constant Exp. ExpConst 3-d Polyn. 4-d Polyn. CJM EXP3

80 2.241 2.580 2.553 2.575 2.578 2.578 2.578 2.579 2.582
r = 7% 90 4.355 5.167 5.121 5.158 5.164 5.164 5.164 5.165 5.169
q = 3% 100 7.386 9.066 9.002 9.054 9.063 9.063 9.064 9.063 9.069
σ = 20% 110 11.331 14.443 14.371 14.430 14.441 14.440 14.441 14.440 14.447

120 16.117 21.414 21.354 21.403 21.412 21.411 21.412 21.411 21.417
80 10.309 11.326 11.238 11.310 11.321 11.320 11.322 11.320 11.330

r = 7% 90 14.162 15.722 15.609 15.702 15.717 15.715 15.718 15.715 15.727
q = 3% 100 18.532 20.793 20.656 20.770 20.788 20.786 20.789 20.785 20.800
σ = 40% 110 23.363 26.495 26.337 26.468 26.489 26.486 26.490 26.485 26.502

120 28.598 32.781 32.607 32.752 32.776 32.773 32.776 32.771 32.790
80 4.644 5.518 5.463 5.507 5.514 5.514 5.515 5.514 5.521

r = 7% 90 7.269 8.842 8.766 8.827 8.837 8.837 8.839 8.837 8.845
q = 0% 100 10.542 13.142 13.048 13.124 13.138 13.137 13.139 13.137 13.147
σ = 30% 110 14.430 18.453 18.347 18.433 18.449 18.448 18.450 18.447 18.459

120 18.882 24.791 24.685 24.771 24.787 24.786 24.788 24.785 24.796
80 12.133 12.145 12.145 12.145 12.145 12.145 12.145 12.145 12.145

r = 3% 90 17.343 17.369 17.367 17.368 17.368 17.368 17.368 17.368 17.368
q = 7% 100 23.301 23.348 23.347 23.348 23.348 23.348 23.348 23.348 23.348
σ = 30% 110 29.882 29.964 29.961 29.963 29.963 29.963 29.963 29.963 29.963

120 36.972 37.104 37.099 37.103 37.103 37.103 37.103 37.103 37.103
Mean Percentage Error -0.52% -0.10% -0.03% -0.03% -0.02% -0.03% 0.02%

CPU (seconds) 448.99 0.01 0.04 107.71 195.85 242.44 39.17 0.08

Table 2 values American put options under different specifications of the exercise boundary. The third column contains European put prices, while
the exact American put values (fourth column) are based on the binomial tree model with 15,000 time steps. The fifth and sixth columns report
the American put prices associated to the constant and exponential boundary specifications, as given by equations (31) and (32), respectively. The
seventh column presents American put prices computed through proposition 4 and based on the exponential-constant parameterization provided by
equation (33). The eight and ninth columns are both based on the polynomial boundary specification of equation (34) with three and four degrees
of freedom, respectively. The American put prices contained in the tenth column are obtained from the exercise boundary specification of equation
(35). The last column presents the American put prices generated by the three-point multipiece exponential function method proposed by Ju (1998).
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Table 3: Comparison of different approximations for American put prices with St0 = $100 and T − t0 = 20 years
American

Early exercise boundary specification
Option parameters Strike European Exact Constant Exp. ExpConst 3-d Polyn. 4-d Polyn. CJM EXP3

80 1.732 5.584 5.574 5.579 5.581 5.582 5.582 5.583 5.585
r = 7% 90 2.384 8.503 8.493 8.498 8.500 8.501 8.501 8.502 8.504
q = 3% 100 3.141 12.346 12.336 12.341 12.343 12.344 12.344 12.346 12.347
σ = 20% 110 3.997 17.261 17.252 17.256 17.258 17.259 17.259 17.260 17.262

120 4.948 23.400 23.394 23.397 23.399 23.399 23.400 23.401 23.401
80 8.447 20.378 20.346 20.364 20.370 20.372 20.372 20.375 20.382

r = 7% 90 10.023 25.135 25.101 25.119 25.126 25.128 25.128 25.132 25.138
q = 3% 100 11.656 30.298 30.264 30.282 30.290 30.292 30.292 30.295 30.302
σ = 40% 110 13.338 35.857 35.822 35.840 35.848 35.850 35.850 35.853 35.860

120 15.065 41.797 41.763 41.781 41.789 41.790 41.791 41.794 41.800
80 2.818 9.864 9.849 9.856 9.858 9.860 9.860 9.862 9.864

r = 7% 90 3.584 13.453 13.438 13.445 13.448 13.449 13.450 13.451 13.454
q = 0% 100 4.423 17.734 17.718 17.725 17.728 17.730 17.730 17.731 17.734
σ = 30% 110 5.331 22.745 22.730 22.736 22.740 22.741 22.741 22.743 22.745

120 6.303 28.526 28.512 28.517 28.520 28.522 28.522 28.523 28.525
80 27.973 32.959 32.924 32.954 32.958 32.959 32.959 32.957 32.962

r = 3% 90 32.769 39.123 39.084 39.117 39.121 39.123 39.123 39.121 39.127
q = 7% 100 37.655 45.523 45.480 45.516 45.521 45.521 45.523 45.521 45.528
σ = 30% 110 42.615 52.137 52.091 52.129 52.135 52.136 52.137 52.135 52.143

120 47.635 58.948 58.899 58.939 58.946 58.947 58.947 58.945 58.954
Mean Percentage Error -0.10% -0.04% -0.02% -0.02% -0.02% -0.01% 0.01%

CPU (seconds) 445.21 0.01 0.02 78.38 276.31 370.89 20.77 0.08

Table 3 values American put options under different specifications of the exercise boundary. The third column contains European put prices, while
the exact American put values (fourth column) are based on the binomial tree model with 15,000 time steps. The fifth and sixth columns report
the American put prices associated to the constant and exponential boundary specifications, as given by equations (31) and (32), respectively. The
seventh column presents American put prices computed through proposition 4 and based on the exponential-constant parameterization provided by
equation (33). The eight and ninth columns are both based on the polynomial boundary specification of equation (34) with three and four degrees
of freedom, respectively. The American put prices contained in the tenth column are obtained from the exercise boundary specification of equation
(35). The last column presents the American put prices generated by the three-point multipiece exponential function method proposed by Ju (1998).
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Table 4: Accuracy of the polynomial specification for a large and random sample of American puts
Polynomial specifications

Second degree Third degree Fourth degree Fifth degree
Percentage Errors

mean -0.0197% -0.0154% -0.0127% -0.0108%
maximum 0.0014% 0.0014% 0.0014% 0.0014%
minimum -0.0725% -0.0585% -0.0497% -0.0432%

99th percentile 0.0008% 0.0009% 0.0009% 0.0009%
1st percentile -0.0656% -0.0526% -0.0447% -0.0390%

Absolute Percentage Errors
mean 0.0198% 0.0155% 0.0128% 0.0109%

maximum 0.0725% 0.0585% 0.0497% 0.0432%
minimum 0.0000% 0.0000% 0.0000% 0.0000%

99th percentile 0.0656% 0.0526% 0.0447% 0.0390%

Table 4 reports the pricing errors associated to the valuation of 1,250 randomly generated American put
options through different polynomial parameterizations of the exercise boundary (34). The strike price is
always set at $100 while the other option features were generated from uniform distributions and within the
following intervals: volatility between 10% and 60%; interest rate and dividend yield between 0% and 10%;
underlying spot price between $70 an $130; and, time-to-maturity ranging from 0.0 to 3.0 years. The pricing
errors produced by the polynomial specifications were computed against the binomial tree model with 15,000
time steps.

21


